Self-assembly of size-controlled liposomes on DNA nanotemplates
نویسندگان
چکیده
Artificial lipid-bilayer membranes are valuable tools for the study of membrane structure and dynamics. For applications such as the study of vesicular transport and drug delivery, there is a pressing need for artificial vesicles with controlled size. However, controlling vesicle size and shape with nanometre precision is challenging, and approaches to achieve this can be heavily affected by lipid composition. Here, we present a bio-inspired templating method to generate highly monodispersed sub-100-nm unilamellar vesicles, where liposome self-assembly was nucleated and confined inside rigid DNA nanotemplates. Using this method, we produce homogeneous liposomes with four distinct predefined sizes. We also show that the method can be used with a variety of lipid compositions and probe the mechanism of templated liposome formation by capturing key intermediates during membrane self-assembly. The DNA nanotemplating strategy represents a conceptually novel way to guide lipid bilayer formation and could be generalized to engineer complex membrane/protein structures with nanoscale precision.
منابع مشابه
Diamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملOxide templates for self-assembling arrays of metal nanoclusters
We demonstrate that ordered arrays of metal clusters of a few nanometers in size can be fabricated by self-assembly on a range of oxide nanotemplates. Two systems were chosen, FeO/Pt(111) and Fe3O4, having in common a reconstructed close-packed oxygen surface layer. Deposition of various metal films results in the formation of nanosized clusters arranged according to the surface long-range orde...
متن کاملHierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization.
We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and co...
متن کاملControlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.
Traditional liposome preparation methods are based on mixing of bulk phases, leading to inhomogeneous chemical and/or mechanical conditions during formation; hence liposomes are often polydisperse in size and lamellarity. Here we show the formation of liposomes that encapsulate reagents in a continuous two-phase flow microfluidic network with precision control of size from 100 to 300 nm by mani...
متن کاملMolecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery
Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeut...
متن کامل